## The worlds most precise thermometer from space



## **Our mission**

constellr operates precise thermal sensors in space that monitor Earth's water, energy, and carbon cycles. Specifically, we deliver precise, daily, global, high-resolution land surface temperature (LST) data for environmental monitoring.

## Our way to achieve this

constellr is building up a proprietary, cutting-edge constellation of infrared monitoring microsatellites. Each microsatellite is equipped with a multispectral cryocooled TIR sensor for acquiring thermal data and a multispectral VNIR sensor to enable precise geolocation, atmospheric correction, and cloud detection.

## **Our technical USPs**

- Patented calibration methodology for accurate radiometric correction, allows miniaturizing the payload.
- Temperature-stabilized, cryocooled sensors for highest image quality.
- LST data acquisition at a 1-day global temporal resolution (4 satellites), up to 10m spatial resolution with <0.1 K temperature sensitivity and 1.5K total radiometric uncertainty.



\$



## **Our Space Segment**



A constellation of microsatellites in the 120 kg class, flying in constellation in the same sun-synchronous orbital plane at an altitude of 540 km with a Local Time of the Descending Node (LTDN) of 1:30 pm. With the maximum field of regard of 30° off-nadir, global daily revisit time is reached with four satellites in orbit.

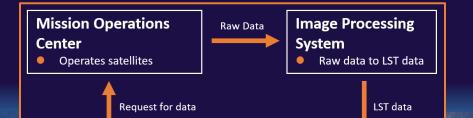
#### **TIR sensor**

- Spectral Range: 8.45 µm 12.00 µm with four spectral bands
- High temperature accuracy (1.5 K) and sensitivity (0.07 K)
- Ground Sampling Distance 28 m at nadir
- Swath 18.5 km at 540 km altitude

#### Data acquisition and delivery

- Up to 1.000.000 km<sup>2</sup> daily imaging capacity
- Operation in mapping or in targeting mode
- Data delivery within 12 hours from recording

#### High agility satellite bus enabling a high duty cycle


#### VNIR sensor

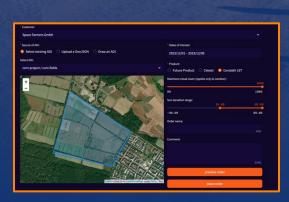
 Spectral Range: 400 nm to 1000 nm with ten spectral channels with Ground Sampling Distance of 10 m
Swath of 21 km at 540 km altitude

## Payload

- Composed of two main elements: a Thermal Infrared (TIR) Instrument and a Visible and Near Infrared (VNIR) Instrument.
- Imaging payload data generation rate: 50.2 Mbit/s
- Weight: ~ 30 kg

## **Our Ground Segment**




#### **Mission Operations Segment**

- Automated and fully cloud-based constellation operations
- In-house developed scalable mission planning system
- Image data downlink rate: 140 Mbit/s

User PlatformInterface with customers

### **Payload Data Segment**

- generating Level-2 Land Surface Temperature/Emissivity (L2 LST/LSE) data within 6 to 12 hours after acquisition
  Fully automated processing pipeline
- Geolocation accuracy: sub-pixel



#### **User Segment**

- System response time from tasking to delivery of less than 24h
- Searchable raw data and product archives
- Tasking and data collection API
- Area-of-interest-based data delivery
- Support of cloud-native geospatial standards



"SkyBee-A01" of the HiVE constellation

2022

2021

Space demonstrator: multispectral TIR-payload "LisR" on board the ISS

Airborne demonstrator: multispectral TIRpayload on board a scientific aircraft

# eesa



**European Commission** 



